最近,致力于通过现代机器学习方法预测脑部疾病的最新神经影像学研究通常包括单一模态并依靠监督的过度参数化模型。但是,单一模态仅提供了高度复杂的大脑的有限视图。至关重要的是,临床环境中的有监督模型缺乏用于培训的准确诊断标签。粗标签不会捕获脑疾病表型的长尾谱,这导致模型的普遍性丧失,从而使它们在诊断环境中的有用程度降低。这项工作提出了一个新型的多尺度协调框架,用于从多模式神经影像数据中学习多个表示。我们提出了一般的归纳偏见分类法,以捕获多模式自学融合中的独特和联合信息。分类法构成了一个无解码器模型的家族,具有降低的计算复杂性,并捕获多模式输入的本地和全局表示之间的多尺度关系。我们使用各种阿尔茨海默氏病表型中使用功能和结构磁共振成像(MRI)数据对分类法进行了全面评估,并表明自我监督模型揭示了与疾病相关的大脑区域和多模态链接,而无需在预先访问PRE-PRE-the PRE-the PRE-the PRE-the PRE-PRECTEN NICKES NOCKER NOCKER NOCKER NOCKER NOCKER NOCE访问。训练。拟议的多模式自学学习的学习能够表现出两种模式的分类表现。伴随的丰富而灵活的无监督的深度学习框架捕获了复杂的多模式关系,并提供了符合或超过更狭窄的监督分类分析的预测性能。我们提供了详尽的定量证据,表明该框架如何显着提高我们对复杂脑部疾病中缺失的联系的搜索。
translated by 谷歌翻译
我们提出了新的WASSTEREIN图形集群,用于动态更改图形。Wassersein聚类惩罚了图之间的拓扑差异。Wassersein聚类显示出优于广泛使用的K-Means聚类。该方法应用于更准确地确定动态变化功能性脑网络的状态空间。
translated by 谷歌翻译
在数据挖掘,神经科学和化学计量学在内的各个领域,分析各种数据集中的多路测量结果是一个挑战。例如,测量可能会随着时间的流逝而发展或具有不一致的时间曲线。 PARAFAC2模型已成功地用于分析此类数据,通过在一种模式(即演变模式)下允许基础因子矩阵跨切片进行更改。拟合PARAFAC2模型的传统方法是使用基于最小二乘的交替算法,该算法通过隐式估计不断发展的因子矩阵来处理Parafac2模型的恒定交叉产生约束。这种方法使对这些因素矩阵充满挑战。目前尚无算法可以灵活地将这种正规化施加,并具有一般的惩罚功能和硬性约束。为了应对这一挑战并避免隐性估计,在本文中,我们提出了一种算法,用于拟合PARAFAC2基于与乘数交替方向方法(AO-ADMM)的交替优化拟合parafac2。通过在模拟数据上进行数值实验,我们表明所提出的PARAFAC2 AO-ADMM方法允许灵活约束,准确地恢复了基础模式,并且与先进的ART相比,计算有效。我们还将模型应用于神经科学和化学计量学的两个现实世界数据集,并表明限制发展模式可改善提取模式的解释性。
translated by 谷歌翻译
用于预测神经影像数据的深度学习算法在各种应用中显示出巨大的希望。先前的工作表明,利用数据的3D结构的深度学习模型可以在几个学习任务上胜过标准机器学习。但是,该领域的大多数先前研究都集中在成年人的神经影像学数据上。在一项大型纵向发展研究的青少年大脑和认知发展(ABCD)数据集中,我们检查了结构性MRI数据,以预测性别并确定与性别相关的大脑结构变化。结果表明,性别预测准确性异常高(> 97%),训练时期> 200,并且这种准确性随着年龄的增长而增加。大脑区域被确定为研究的任务中最歧视性的,包括主要的额叶区域和颞叶。当评估年龄增加两年的性别预测变化时,揭示了一组更广泛的视觉,扣带和孤立区域。我们的发现表明,即使在较小的年龄范围内,也显示出与性别相关的结构变化模式。这表明,通过查看这些变化与不同的行为和环境因素如何相关,可以研究青春期大脑如何变化。
translated by 谷歌翻译
深度学习已被广​​泛应用于神经影像学,包括预测磁共振成像(MRI)体积的脑表型关系。 MRI数据通常需要进行广泛的预处理,然后才能通过深度学习准备建模,部分原因是其高维和异质性。各种MRI预处理管道都有自己的优势和局限性。最近的研究表明,即使使用相同的数据,与管道相关的变化也可能导致不同的科学发现。同时,机器学习社区强调了从以模型为中心转移到以数据为中心的方法的重要性,因为数据质量在深度学习应用中起着至关重要的作用。在这个想法的激励下,我们首先评估预处理管道选择如何影响监督学习模型的下游表现。接下来,我们提出了两个管道不变表示方法MPSL和PXL,以提高分类性能的一致性并捕获管道对之间的类似神经网络表示。使用来自英国生物库数据集的2000名人类受试者,我们证明了这两种模型都具有独特的优势,特别是可以使用MPSL来改善对新管道的样本概括,而PXL则可以用来提高预测性能一致性和代表性封闭管道集中的相似性。这些结果表明,我们提出的模型可用于克服与管道相关的偏差,并提高神经成像预测任务的可重复性。
translated by 谷歌翻译
人工智能在学科和领域之间普遍存在,生物医学图像和信号处理也不例外。对该主题的增长和广泛的兴趣引发了一项巨大的研究活动,这反映在指数的研究工作中。通过研究大规模和多样化的生物医学数据,机器和深度学习模型彻底改变了各种任务,例如建模,分割,注册,分类和合成,并优于传统技术。但是,将结果转化为生物学/临床解释信息的困难是阻止其在现场的全部剥削。可解释的AI(XAI)试图通过提供使模型可解释并提供解释的手段来填补这一翻译差距。到目前为止,已经提出了不同的解决方案,并且正在增强社区的兴趣。本文旨在在生物医学数据处理中提供有关XAI的概述,并指出即将在2022年3月出现的IEEE Signal Processing杂志的生物医学图像和信号处理深度学习的特刊。
translated by 谷歌翻译
功能连接(FC)研究已经证明了通过FMRI相关矩阵的无向加权图来研究脑及其疾病的总体价值。然而,与FC的大多数工作都取决于连接的方式,还取决于FC矩阵的手册后HOC分析。在这项工作中,我们提出了一个深入的学习架构Braingnn,它可以学习连接结构,作为学习对象的一部分。它同时将图形神经网络应用于此学习图,并学习选择对预测任务重要的大脑区域的稀疏子集。我们展示了在精神分裂症FMRI数据集中的模型的最先进的分类性能,并证明了内省如何导致紊乱的相关结果。模型学到的图表表现出强烈的阶级歧视,相关地区的稀疏子集与精神分裂症文献一致。
translated by 谷歌翻译
发现不同的特征和他们从数据的关系可以帮助我们揭示各种任务至关重要的宝贵知识,例如分类。在神经影像体中,这些特征可以有助于理解,分类和可能预防大脑疾病。高度性能的模型内省过度分辨深度学习(DL)模型可以帮助找到这些特征和关系。然而,为了实现高性能等级DL模型,需要许多标记的训练样本($ N $)很少可用。本文介绍了一种涉及图形卷积/神经网络(GCNS / GNN)的预训练方法,基于输入样本的两个高级嵌入之间的相互信息。许多最近提出的预训练方法预先列出了诸多可能的架构网络之一。由于几乎每个DL模型都是多个网络的集合,因此我们从模型的两个不同网络中获取我们的高级嵌入式 - A卷积和图形网络 - 。学习的高级图潜在表示有助于提高下游图形分类任务的性能,并绕过需要大量标记的数据样本。我们将方法应用于神经影像学数据集,用于将受试者分类为健康对照(HC)和精神分裂症(SZ)组。我们的实验表明,预先训练的模型显着优于非预先训练的模型,并且需要50美元的数据进行类似的性能。
translated by 谷歌翻译
多变量动力过程通常可以通过表示每个单独的时间序列的组件之间的加权连接图直观地描述。甚至如Pearson相关矩阵的简单表示,如Pearson相关矩阵,也可以是脑成像文献中所示的信息和预测。但是,有一种共识期望,强大的图形神经网络(GNNS)应该在类似的环境中更好地执行。在这项工作中,我们提出了一个比深谷深度浅的模型,但在脑成像应用中的预测准确性上才能表达它们。我们的模型学习单个时间序列的自回归结构,并通过以端到端的方式通过自我关注机制来估计学习的表示之间的指示连接图。模型的监督培训作为患者和控制之间的分类器导致模型,该模型产生指示的连接图,并突出显示每个受试者预测的时间序列的组件。我们展示了我们对功能性神经影像数据集分类精神分裂症患者和对照的结果。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译